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1. In [1] the suggestion was made to describe the mechanical behavior
of materials with complex properties by means of nonholonomic models of
continuous media. Such models may be introduced in the following manner.
Consider a medium in which the thermodynamic parameters of state are

. %
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Here €;; are the components of the tensor of finite deformation in a
Lasrangian system of coordinates §‘, g;; ond gl are the components of
the metric tensor G of the initial and éhe deformed space, respectively;
T is the temperature, pr are the contravariant components of the stress
tensor in the system §‘, p 1s the density, and y is some supplementary
variable parameter,

The introduction of stresses as state parameters is connected with
the fact that in media which are to be considered, the stresses are not
functions of other parameters of system (1.1). We also emphasize, that
we plan to use precisely the contravariant components of the generalized
stress tensor o‘f This leads to a greater simplicity in theoretical con-
siderations.

The explicit introduction of one or several supplementary parameters
of the type X 18 necessary in media with complex properties. These para-
meters are related to the quantitative description of internal physico-
chemical processes essential for mechanics.

In addition to the system of parameters (1.1), which are variable in
general, the physical properties of the medium may be determined also by
a system of physical constants — scalars, vectors or tensors. The
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explicit enumeration of such physical constants is necessary for the
construction of special models of continuous media.

Liet us deduce now the consequences obtainable for media of type (1.1)
from the laws of thermodynamics.

Let us designate by S and F the entropy and the free energy of an
element of uniform mass, and let us write down the first and second law
of thermodynamics in the form

— oMde,, 4 SAT = —dQ’ (1.2)
TdS = dQ + dQ’ (1.3)

where dQ and oklde k1 is the external influx of heat and the elementary
work of internal surface forces calculated per unit of mass, dQ' is non-
compensated heat; in irreversible processes dQ' > 0.

Let us assume that the irreversible processes in the media considered
are related to changes in the parameter x. Then as the simplest hypothesis
we may set

d
dQ =xEay, x>0 (1.4)

where k is a scalar function of parameters (1.1).

Equation (1.2), taking into account (1.1) and (1.4) may be rewritten
in the form

OF iy 4 2F 4y d s)dr Xd
oy, X+‘a +( il ) ekl+( T+ )d =—% L4 (1.5)

In Equation (1.5) the differentials d‘kl and daij are taken for a
given element in the corresponding system of Lagrangian coordinates. In
this case, as is known, dekl/dt are the components of the rate of de-
formation temsor. The quantities do‘//dt¢ are conveniently taken as the
components of the stress rate tensor [2].

If in addition to the assumption that the parameters (1.1) are in-
dependent one assumes that the quantities dy, de,;, dT and ot/ are
also independent, then we obtain from (1.5), in particular, a system of
finite equations

/]

57 ="

which will permit to reduce the number of independent determining para-
meters in (1.1); therefore, the conservation of assumption (1.1) may be
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related to the presence of nonholonomic relations

de'l = A¥ay + BUaT 4 AV*lge,, (1.6)
where B'J anq‘Aijkl are functions of the system of determining parameters
(1.1), but A'J may be considered as depending also on the derivatives
with respect to time and on coordinates of the parameters of state. Re-
lations (1.5) and (1.6) lead to the following equations (the increments
dy, dT and dekl are assumed to be linearly independent):

oF oF

ST At g =7 =0 Gi=1,2 (4.7
aF . oF
3;;73”—{—777-}—.9:0 (1.8)
OF  9F .. dy,
L A= —u— 1.9)

Equations (1.7) and (1.8) may be considered as a generalization of
the equations of state of the usual theory of elasticity. They either
give the limitations on the coefficients Aijkl and Bij, if the free
energy F and entropy S are specified, or they permit F and S to be found
for prescribed Aijkl and Bij, in the latter case these coefficients are
also subjected to limitations expressed by conditions of compatibility
of equations of the system (1.7) and (1.8). Relation (1.9) is considered
as the kinetic equation for the determination of the parameter Y.

Relations (1.3), (1.6) and (1.9) together with the dynamic equations
and the equation of continuity may form a closed system of equations, de-
termining a model of a continuous medium for a wide clasq.of qqchanical.
thermal and physical processes, if the quantities AY, BY, AR ond F
are fixed, such that the relations (1.7) are satisfied identically; the
entropy is then calculated from (1.8).

Let us show that within the framework of the suggested theory bodies
with creep and relaxation may be described, as well as those with pro-
perties of hyperelasticity. Let us consider first several purely illus-
trative examples of such media, not connecting them with results of
specific experiments on some particular materials.

2. Let us consider the example of a body with creep. Let us assume
that the tensor AJ%! does not depend on g, and o', just as in the de-
rivation of Hooke’s law. Then we have for an isotropic body

Aijkl — Lgoﬁgokl + m (goikgojl + go‘ilgojk) (21)

where A and p are scalars, which may be considered as functions of T and
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x- Analogous formulas which have a more complex structure may be written
down in the case when among the number of physical constants determining
the medium there are vectors or tensors, i.e. for an anisotropic medium,

Let us assume further, that for y = const the thermal effecis are the
same as in the usual linear thermoelasticity. Then

. oA . a . s
BY = [37,— 1i(e) — a] g 2 ogtigt (2.2)
where a(T, X) is the coefficient of thermal expansion, I (g) 1s the first
invariant of the tensor of deformation (I,(e) = °‘Js ))
For such a selection of A*/%! and B/ relations (1.7) and (1.8) are

satisfied identically 1if we set
; A
F= "e-- —pls(e)— 5 I*(e) + (T, %) (2.3)
1 ak :
S=r 5 [ a7 18 () + z L1, (e)] +aly (g)— an v ()= Ne,e) (24)

It is easily verified that for y = const (2.3) becomes the expression
for the free energy of a linear elastic body. We set further

— A% =1, (6)g°¥ + 2nd" 2.5)
‘Ko aF ij
=V = ( A eJ) (2.8)
Here I,(0) = o5iJ, Iy(o) = g;; gklo olkgit, { and n are scalar func-

tions, related to %he first and second viscosity of the medium; Ky =
Ko(X, D.

Let us assume further, that A, u, a, C, n. ¥, do not depend on Y,
while the function f(T, X), entering the expression for the free energy,
may be represented in the formula f,(T) *+ f,(X), whereby we can assume
that f,(X) = kY the latter may always be achieved by introducing in
place of x a new parameter x, = k‘dfz(x).

For such a selection of coefficients the kinetic equation for y takes
on the form

V1L @)
dt % (T, %)

From Equation (2.7) it is seen that under stationary conditioms, i.e.
for o*) = const and T = const, the parameter x is a function of time t.
In the available theories of creep for infinitely small deformations the
time t is always used as the parameter y. It is obvicus, however, that
under the conditions of variable temperature or variable loading this is
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not satisfactory. In this case the parameter Y should be ased which is
not a simple function of time as is reflected in the Equation (2.7).
Equations (1.6) may now be written in the form

dotl VTis) o ; (dc"" )
B A1 ' 4 i 4] _-
da = Ko [E41(0) 6™ + 2n0¥] + | 32 x==const 28
where
7
o'Vy= M (e) g°Y -+ 2peti — go¥ & adT
Te

Formulas (2.3), (2.7) and (2.8) defime completely a certain model of
a continuous medium. The sarbitrariness contained in them in the form of
undetermined functions a, A, u, [, 1, Ky, f;, k i8 removed by means of
results of very simple experiments in the case when these equations are
applied for the description of some specific material.

Let us investigate the behavior of this medium under various condi-
tions with the example of uniaxial extension - compression.

Let us direct the axes of a Lagrangian system of coordinates §i along
the principal axes of deformation, whereby the specimen is stretched by
the force acting along the axes §1. Let the system of coordipates at the
initial instant be a Cartesian one

<

e =g =0}

During the whole process of deformation only the components 011, €11
€59 = €33, are different from zero, and in the system (2.8) only two
equations are essential

de. dst? di d aT
E -d—?~ = -%— + B (st)r — {(1 —2v) [11 ©®3F — a]+ 2 j"";r (e — Zve”)}T 2.9)

gl B[ RE Y gupfu—2m[n @ g —a |-

d ar
-2-;¥'Even——(1—w en]}';;;-
g BGh+2) _4 _td—2v)+ 27
T AFw 0 YT A PT o

The solutions of this system are of the form:

a) in the case of isothermal stress relaxation

T =T, ey =éen’
oo I 4+v)(i—2v)
o= TRy m=en'— -~ —pgg ("~ o)

¢ — gli, £40° = 8gg for t = 0
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b) in the case of isothermal creep for fixed all

T =T,, sl =g°1
: B ity
ey =en’ + ’%‘ (s" 1, g3 = 899° + ( ,:: E ) (s°1%)%
en’ =gy, 83" =8y for t=10

¢} in the case of isothermal deformation with constant velocity V

T=T, en=Vt

1 1 1—2
.V-m, 8n=[b~%} gv]m~ﬂ%( +v)( w

e =(EB)", & = YV EE; =0, ep=0 fort=0

ol = g V Viamb—=

The solutions obtained make it possible to fix the parameters entering
into the definition of the medium by comparison with results of very
simple experiments on specific materials. Thus, for instance, if for
fixed g,; the quantity of deformation €,, does not change either, the
parameter { is equal to 0.

Let us now consider processes connected with temperature changes
during deformation. In this case the energy equation must be used

dU —c'de;; = dQ (2.10)

where dU is the increase in the internal emergy of the medium, and dQ is
the external influx of heat.

Let us assume for simplicity that A, u, «, &k, Ko {, n do not depend
on T. Then

>

U=F—TS=5"e;—— 1) —pla(e) +aTl; (e) +( hA—T f‘) + ky (2.11)
It is easily shown that ¢ = 3¢/O3T, where ¢ = f; — TOf,/ O T is the
heat capacity of the medium for constant deformations. The quantity c is

assumed to be constant,

For the one-dimensional processes considered the energy equation takes
on the form

+2 oll ar de de
_Ejgiwm%y«Z%WW&n+k;;+cir+“T(£y+2df)z - (2.12)

Let us apply equation (2.12) for the study of the process of adiabatic
creep. This process is described by the system of equation
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deyy 2'{] o daT d822 21’]'\) o ar .
Ed—t=%—o(du)2+7a(1—2v), E ai :—70(611)2—{—7&—(1(1—2’\)) (2.13)
deu -dg dT 21 k
ol (—dr +2 G+ g = S (o — o

Here, for simplicity, we set g = 0. The solution of this system is
given by the formulas

o a 2N .
€11 = 811 + ﬁ (T —_ To) + "k;)‘ (5 ll)-t

E
3K = —=
a 2nv ( 1—2 >
893 = B22° - 3K (T —To) — —::o— o°11)2¢ v
[+ a2TKE B [20(s°1)2% [ %oE 4 (en® — oTo / 3) 4 k / 2nc°11]2
a?K3 - 1 =M,
en’ = én, 822" = €2, To=T for t=0
Mo — [c+ ?T K3)2 E[(en® —aTo/3)+ k202
0= a’ks3 - 1

For [ # 0 the solution is given by the same formulas with different
constants.

Thus the temperature in the process of adiabatic creep increases with
time. The deformations thereby are increasing faster than in the case of
isothermal creep. Experiments with variable temperature permit.the values
a and ¢ to be determined for a given medium.

3. Let us consider the example of a hyperelastic material. Let it be
required to describe the behavior of the material in which large revers-
ible deformations can occur which increase in time. The model of such a
medium may be constructed if we consider that x = 0 (there is no dissipa-
tion connected with deformation), k is a quantity which is essentially
d;tferent from 0 (the internal energy necessarily depends on Y) and the
AYY are such functions of dYy/dt that the nonholonomic relations (1.6)
have a reversible character, i.e. at the changes of the sign of the
differentials dy, dT and dEij the quantities do'/ also change sign. Con-
sider, for instance,

y dx 2 Eij —k 31
A=A ey AS Lt GF ey

Then the kinetic equation for y takes on the form

d
X (aly(e)—bla()] (3.2)

with the condition that the free energy is again given by the form (2.3).
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1f Aijkl and Bif,are selected the same as in the preceding example,
then the relations (1.6) may be written down in the following form:

d cij Gl‘ij

k i]' (d 0]
—Ez—*.—:‘mlalz(a)*blzw)]s + dr G-3)

) X=const

Let us consider the process of isothermal uniform loading of such a
medium for conditions I;(g) = 0. They are described by the equation

ds'' 3k jaly(e) — bl2(5)] dell
o= 2138 el + 3 (3.4)
whereby I,(e) = 3&112/2, Io) = (011)2. It is obvious that the state
Eyy = ell‘, o " = 0‘11 with the condition
—l—S—a (e1*)? = b (s*11)2
2 usm = (3.5)

is an equilibrium state. It satisfies the Equations (3.2) and (3.4);
thereby y = yx* = const. Let us show that in the processes of deformations
with 011 = const and in processes of variable stress with €,; = const

the material considered approaches an equilibrium state, determined by
condition (3.5).

Let o!! = ¢®1! = const. Then from (3.4) it follows

3 3 N
7 et bty = [‘z‘" a(en’)?—0 (smPJ exp (— i:‘“)

e’ =gy for t =0

Thus, &,, =¥ (26/30)0°'! = ¢, |* as t = ®, whereby, if the initial de-
formation &110 is smaller than 511" corresponding to the given stress
0911, then a process of creep takes place, i.e. the deformation increases
until the equilibrium state is reached. In the opposite case a process
of restitution takes place; for fixed stress 0011 the deformation of the
specimen decreases until the equilibrium state is reached. If ooll =0,
then also €yy* = 0 and, consequently, when the stress is relieved com-

plete resitution takes place.

The change of stresses for fixed €1, = 5110 takes place according to
the law

2 b ot Hi-Cexp(mVsab;zz)
3 a en’ {4 Cexp(—V3ab/20)

where C is related to 0011, the initial value of 011.
11

ot - \1(3a/2b)e“0 = g as t = o If o1l > gell
stress relaxation takes place; for o

Consequently,
, then the process of

Oll < 5¢1l stresses increase for



1086 M.E. Eglit

fixed deformation.

4. The examples considered were of qualitative and illustrative
character. In a series of cases, however, a quantitative description of

real materials may be given in the framework of the considered system on
nonholonomic models.

Let us present now a simple model which describes with sufficient
accuracy the results of the experiments by Bergen, Messersmith and Rivlin
[3] on relaxation of stresses in certain filled high-polymers.

In these experiments five materials were used: vulcanized, heavily
filled synthetic rubber and four polyvinyl chloride compositions contain-
ing various amounts of inorganic fillers (from 0% to 50% by volume).

The specimens from these materials in the shape of straight tubes of
constant circular cross-section with internal and external radii « and b
were subjected simultaneously to simple extension and torsion in the
course of a small interval of time 0 < t <7 with constant temperature.
The deformations were fixed subsequently and for t >> 1 the forces were
measured which were necessary to maintain these deformations.

The results of experiments were used to construct a mathematical model
which would permit the description of the materials considered during
processes of relaxation, The authors show that im the experiments one
may assume with sufficient asccuracy that the materials are incompressible
and that in processes of relaxation the following relations are satisfied

P = ey — pby; “.1)

where pij are thg components of the stress temsor, p is the hydrostatic
pressure, &,. &re the components of the small strain tensor, O is the
scalar function of time t and two strain invariants (Il(e) = 0 by virtue

of the condition of incompressibility by small deformations).

The scalar function © was found by the authors for all five materials
considered. It is clear that the Equations (4.1) in which time t appears
explicitly, do not serve as a mathematical model of either material.
These equations do preclude the possibility of not only studying the be-
havior of materials in processes connected with the change of the strain
tensor or the temperature, but also regarding the initial stage of the
process of relaxation by €;; 7 const. At the same time a whole class of
models with relations of the type (1.6) may be suggested which describe
the behavior of the material in any process and by which the final stage
of relaxation for fixed small strains obeys the Equations (4.1). Let, for
instance,
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AY =g % M, a>0, (4.2)

where o = (e, D is a function which must be determined from experi-
ments. The function k will be determined in such a way, that the kinetic
equation for x is of the form of

d—x =j—M(e;;, T)xB, B>1 (4.3)

M and B = B(T) are also determined from experiments.

Then for an arbitrary selection of coefficients Bij and Aijkl in re-
lations (1.6) the isothermal relaxation of stresses for fixed strains
obeys the following laws:

de¥ = (e"' + % c"") dy
or

d (G{j . cgoij) — [eﬁ + _:_ (Gﬁ _ cgoij)] dy, (4.4)

In these formulas g oij are the components of G in undeformed space,

g = o‘}gljo/s the strains are small and the material is incompressible:
I,(g) =0,
1

The solution of system (4.3) and (4.4) is given by the equations

1

=[M@B—1)t+C) P71 H4.5)

. o % . - o . \ a
ot —ogt = =27 e +'_c i grgeti X e"](-%) (4.6)

where
ij: ij 0 i
=67, o =0, Y=y forit=0 Co =—5=5
Xo

For large times t(t >> T) these formulas become

.
=[M@—1) P~ %.7)

off _ X
a—1

1
—og =@t ME—1 P 48

The quantity T is set equal to the largest of t) and tij' whereby
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oo Co o Co®/ ¥ [(a — 1) (6°¥ — gog°H) | (B—V/(a—1) Co
'TMEB-—1) i M@ —1) (g9 )F—Te—D) —ME=1)
(i,7=1,2,3)

Thus the final stage of processes of stressed relaxation in the media
of the type considered is described by formulas which coincide in the
construction with those of the authors [3]. Indeed:

1) the stresses do not depend on their initial value; this means, that
the material "forgets" the history of initial deformations;

2) the dependence of stresses on time and deformation is given in the
form

" — og°t = @1 (1) @ (ey;, To) &¥
where P does not depend on deformation, nor ¢, — on time;

3) the function

1
= t B—1

is a decreasing function of time t by § > 1. On the basis of experimental
results given in form of tables in [3], the value of P may be determined
for a temperature T = 21 & 1°C, which corresponds to the conditions of
the experiments and also the dependence of the function

_ 1
(@—1)1 M @E—1)] P2

on deformation for the same temperature. Thus, for instance, for speci-
mens made of polyvinyl chloride composition No. 1 we may assume

1
B—1=764 pla—N)TMEB—1)] Pl=4
where A is a constant for given temperature and is equal to 1.85 x 103
lb/inz; for specimens of polyvinyl chloride composition No. 3

1
B—1=638 pla—1) 1 (MB—1)] P1=A—BHig

where J; = 2(e;i€;; — €;;€;,), A=0.89 x10% 1b/in?, B = 0.86 x 10° 1b/in?
for the same temperature of the experiments.

However, the tests conducted in [3]. are entirely insufficient for a
complete determination of the model. They do not permit to select Xo
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because the initial stage of the relaxation was not investigated; o and
¥ cannot be determined from them separately, the dependence of all the
functions of temperature, the coefficients B'/, A‘)kl, K, cannot be
selected in a suitable way, nor can the form of the free energy F. For a
complete determination of the model tests must be conducted in particular
on isothermal creep and on deformation under conditions of variable
temperature,
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