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1. In Cl] the suggestion was made to describe the mechanical behavior 
of materials with complex properties by means of nonholonomic models of 
continuous media. Such models may be introduced in the following aanner. 
Consider a medium in which the thermodynam~e parameters of state are 

eij* T, =*j t x eij = - ; b?,; 

Here E.. are the components of the tensor of finite deformation in a 
Lagrangi~‘system of coordinates 5 i; g . .’ 

“i 
and giTare the components of 

the metric tensor C of the initial and he deformed space, respectively; 
T is the temperature, ptl are the contravariant components of the stress 
tensor in the system c’, p is the density, and x is some supplementary 
variable parameter. 

The introduction of stresses as state parameters is connected with 
the fact that in media which are to be considered, the stresses are not 
functions of other parameters of system (1.1). We also emphasize. that 
we plan to use qrecisely the contravariant components of the generalized 
stress tensor oaf. This leads to a greater simplicity in theoretical con- 

siderations. 

The explicit introduction of one or several supplementary parameters 
of the type x is necessary in media with complex properties. These para- 
meters are related to the quantitative description of internal physico- 
chemical processes essential for mechanics. 

In addition to the system of parameters (1.1)) which are variable in 
general, the physical properties of the medium may be determined also by 
a system of physical constants - scalars, vectors or tensors. The 
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explicit enumeration of such physical constants is necessary for the 
construction of special models of continuous media. 

Let us deduce now the consequences obtainable for media of type (1.1) 

from the laws of thermodynamics. 

Let us designate by S and F the entropy and the free energy of an 
element of uniform mass, and let us write down the first and second law 
of thermodynamics in the form 

dF - $I’de,, + SdT = - dQ’ (W 

TdS = dQ + dQ’ (1.3) 

where dQ and akldEkl is the external influx of heat and the elementary 
work of internal surface forces calculated per unit of mass, dQ’ is non- 
compensated heat; in irreversible processes dQ’ > 0. 

Let us assume that the irreversible processes in the media considered 
are related to changes in the parameter x. Then as the simplest hypothesis 

we may set 

dx 
dQ’=xdtdX, X),0 (1.4) 

where K is a scalar function of parameters (1.1). 

Equation (1.2), taking into account (1.1) and (1.4) may be rewritten 
in the form 

g dx -f- $ d& + (~--cJkl)dekl+(-&-+S)dT=-~~d~ (1.5) 

. . 
In Equation (1.5) the differentials dekl and do’] are taken for a 

given element in the corresponding system of Lagrangian coordinates. In 
this case, as is known, dEkl/dt are the components of the rate of de- 
formation tensor. The quantities doii/dt are conveniently taken as the 
components of the stress rate tensor [21. 

If in addition to the assumption that the parameters (1.1) are in- 
dependent one assumes that the quantities d x, I kt, dT and &raJ are 
also independent, then we obtain from (1.5)) in particular, a system of 
finite equations 

which will permit to reduce the number of independent determining para- 
meters in (1.1); therefore, the conservation of assumption (1.1) may be 
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related to the presence of nonholonomic relations 

da’i = AHdX + B’jdT + Aijk’dek, (1.6) 

. 
where B’I an! ,Aijkl are functions of the system of determining parameters 

(1.1). but Aa1 may be considered as depending also on the derivatives 
with respect to time and on coordinates of the parameters of state. Re- 
lations (1.5) and (1.8) lead to the following equations (the increments 
dx, dT and dskl are assumed to be linearly independent): 

?!? _@ij + _!.I$ _ & = 0 

ad’ G 

~B'i+$+s=o 

A’i= --%$ 

(f-7) 

(f 4 

W) 

Equations (1.7) and (1.8) may be considered as a generalization of 
the equations of state of the usual theory of elasticity. They either 
give the limitations on the coefficients A ijkl and B’J, if the free 

energy F and entropy S are specified, or they permit F and S to be found 
for prescribed Aijkl and Bij, in the latter case these coefficients are 
also subjected to limitations expressed by conditions of compatibility 
of equations of the system (1.7) and (1.8). Relation (1.9) is considered 
as the kinetic equation for the determination of the parameter x. 

Relations (1.3). (1.8) and (1.9) together with the dynamic equations 
and the equation of continuity may form a closed system of equations, de- 
termining a model of a continuous medium for a wide .class .of mechanical, 
thermal and physical processes, if the quantities A”, 2’1 Aijkl and F 

are fixed, such that the relations (1.7) are satisfied ideitically; the 

entropy is then calculated from (1.8). 

Let us show that within the framework of the suggested theory bodies 
with creep and relaxation may be described, as well as those with pro- 
perties of hyperelasticity. Let us consider first several purely illus- 

trative examples of such media, not connecting them with results of 
specific experiments on some particular materials. 

2. Let us consider the example of a body with creep. Let ua assume . 
that the tensor A ijkl does not depend on E and alJ, just as in the de- 

rivation of Hooke’s law. Then we have for 8’: isotropic body 

where h and p are scalars, which may be considered as functions of T and 
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x. Analogous formulas which have a more complex structure may be written 
down in the case when among the number of physical constants determining 
the medium there are vectors or tensors. i.e. for an anisotropic medium. 

Let us assume further, that for x = const the thermal effects are the 
same as in the usual linear thermoelasticity. Then 

fjV = 
[ 
$ I1 (e) - a 1 goij + 2 3 eklgOkigotj (2.2) 

where a(T, x) is the coefficient of’thermal expansion, 11(a) is the first 
invariant of the tensor of deformation (Xl(e) = goiisij)). 

For such a selection of Aijkl and Bii relation% (1.7) and (1.8) are 
satisfied identically if we set 

F = & s ij - ~12 (s) - h, 11’ (e) + f (T, x) 2 (2.3~ 

(la (E)= g”*‘gokt%iR %j, ) (2.4) 

It is easily verified that for x = const (2.3) becomes the expression 
for the free energy of a linear elastic body. We set further 

(2.5) 

(2.Q 

Here Il(CY) = gi .OG’j, I,(U) = 

t 
gij”gkZ ooikojz; 5 and r) are scalar func- 

tions, related to he first and second viscosity of the medium; K~ = 

KO(X. n. 

Let us assume further, that A, u, a, 5, ‘I, K,, do not depend on x, 
while the function f(T, x), entering the expression for the free energy, 
may be represented in the formula fl(T) + f,(x), whereby we can assume 

that f?(x) = kx; the latter may always be achieved by introducing in 
place of x a new parameter xl = k’lf,(xf. 

For such a selection of coefficient% the 
on the form 

kinetic equation for x takes 

(2.7) 

From Equation (2.7) ‘it is seen that under stationary conditions, i.e. 
for o’f = const and T = const. the parameter x is a function of time t. 
In the available theories of creep for infinitely small deformations the 
time t is always used as the parameter x. It is obvious, however, that 
under the conditions of variable temperature or variable loading this is 
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not satisfactory, III this case the parameter x should be zved which is 
not a simple function of time as is reflected in the Equation (2.7). 
Equations (1.6) may nov be written in the form 

&ij v/II -=-- 0ij 
dt x0 KZl(@kT 

x=conet 
WV 

where 

T 

d& hzl te) goij + 2&j - g+ s adf 
T. 

Formulas (Z.3), (2.7) and (2.8) define completely a certain model of 
a continuous medium. The arbitrariness contained in them in the form of 
undetermined functions a. h, I& cV q, K*, fl, k is removed by means of 
results of very simple experiments in the case when these equations are 
applied for the description of some specific material. 

Let us investigate the behavior of this medium under various condl- 
tions with the example of uniaxial extension - compression. 

Let us direct the axes of a Lagrangian system of coordinates ci along 
the principal axes of deformation, whereby the specimen is stretched by 

the force acting along the axes c’. Let the system of coordinates at the 

initial instant be a Cartesian one 

During the whole process of deformation only the components oll, ~11, 

s22 = u33’ are different from zero, and in the system (2.8) only two 

equations are essential 

&L 
dl -- v dg.+ [P - 

dp 
-277p- lven- (1 - vf fad} -$- 

The solutions of this system are of the form: 

a) in the case of isothermal stress relaxation 
T = Tel en = me 

cgl = 
&l 

5 

1 + fw"t ' 
82% = eg,O-- x 

(1 + N (i --VI (‘.$l_ ,olx) 

EP 

,fJll = $1 . tolo = ell for 1 = 0 
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b) in the case of isothermal creep for fired oll 

T = To, 611 = $11 

P 
811 = 811’ + c (O”“)‘t, ha = em0 + 

c) in the case of isothermal deformation with constant velocity Y 

T = To, El1 = vc 

The solutions obtained make it possible to fix the parameters entering 

into the definition of the medium by comparison with results of very 
simple experiments on specific materials. Thus. for instance, if for 
fixed ell the quantity of deformation ~~~ does not change either. the 
parameter 5 is equal to 0. 

Let us now consider processes connected with temperature changes 
during deformation. In this case the energy equation must be used 

dU - d”deij = dQ (2.%0) 

where dU is the increase in the internal energy of the medium, and dQ is 

the external influx of heat. 

Let us assume for simplicity that h. fl, a. k, K*, 5. q do not depend 
on 7’. Then 

U = F - TS = di eii aTI (4 + (A - T’&) + kx (2.11) 

It is easily shown that c = aq$aT, where (p = fl - Tafl/ a T is the 
heat capacity of the medium for constant deformations. The quantity c is 
assumed to be constant, 

For the one-dimensional processes considered the energy WUatiOn takes 

on the form 

Let us apply euuation (2.12) for the study of the process of adiabatic 
creep. This process is described by the system of equation 
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E + = 2 (&)* + $ u (1 - 2~) , E 2 = - $ (cY=“)~+ $ ci(l - 2%~) (2.13) 

Here, for simplicity, we set < = 0. The solution of this system is 

given by the formulas 

E 

822 = e2so + -& (T - To) - %;; 6°11)zt 
3K = - I-2v 

[c + cPTK8]2 E [ 2q (@)‘t / x& + (En’ - ~TO t3) + k / 2w”“12 
azK8 - 1 

= nf 
0 

ho = En, Eaz” = Em, To= T for t =0 

M = [c+ aaTopla E [ (Ebb’ - aTo / 3) + k / 2qa”11]2 
0 a”Ka - 1 

For 5 # 0 the solution is given by the same formulas with different 

constants. 

Thus the temperature in the process of adiabatic creep increases with 

time. The deformations thereby are increasing faster than in the case of 

isothermal creep. Experiments with variable temperature permit.the values 

a and c to be determined for a given medium. 

3. Let us consider the example of a hyperelastic material. Let it be 

required to describe the behavior of the material in which large revers- 

ible deformations can occur which increase in time. The model of such a 

medium may be constructed if we consider that K = 0 (there is no dissipa- 

tion connected with deformation), k is a quantity which is essentially 

different from 0 (the internal energy necessarily depends on x) and the 

AaI are such functions of dx/dt that the nonholonomic relations (1.6) 

have a reversible character, i.e. at the changes of the sign of the 

differentials dx, dT and deij the quantities daij also change sign. Con- 

sider, for instance, 

“= [Uza (E)--kbla (a)] --T 

Then the kinetic equation for x takes on the form 

yg = -- [ala (e) - bZa (a)] 

(3.1) 

(3.2) 

with the condition that the free energy is again given by the form (2.3). 
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If Aijkl and Bij .are selected the same as in the preceding example, 

then the relations (1.6) may be written down In the following form: 

(3.3) 

Let us consider the process of isothermal uniform loading of such a 
medium for conditions II = 0. They are described by the equation 

dall 3k [ala (8) - blz (41 
-= 
dt 2Ia (8) 

811 + 3p g (3.4) 

whereby Iq(~f l; 3~111~ 2/2. Iz(a) = (*11j2. It is obvious that the state 

El1 = fll** u = u’ with the condition 

+ a (en*)* = b (c.*ll)z 
(3.5) 

is an equilibrium state. It satisfies the Equations (3.2) and (3.4); 
thereby 
with al’ 

x = X* = const. Let us show that in the processes of deformations 
= const and in processes of variable stress with trll = con& 

the material considered approaches an equilibrium state, determined by 

condition (3.5). 

Let oll = ool’ = const. Then from (3.4) it follows 

3 
2 as113 - b (S”“,)2 = 

i 

3 
-zj-- a (su”)a - b (&ll)2] exp (- $t, 

EllD = 811 for t -= 0 

Thus, ~~~ - d(2b/3a)ao1’ = .cll* as t - a, whereby, if the initial de- 
formation ell o is smaller than sll*, corresponding to the given stress 
ool’, then a process of creep takes place, i.e. the deformation increases 
until the equilibrium state is reached. In the opposite case a process 
of restitution takes place; for fixed stress ool’ the deformation of the 
specimen decreases until the equilibrium state is reached. If ,011 = 0, 
then also ~1~~ = 0 and. consequently, when the stress is relieved com- 
plete resitution takes place. 

The change of 

the law 
stresses for fixed ill = ~~1 ’ takes place according to 

2 b a11 1 -C exp (- 1/3ab j 2t) ---_ 
3 a f$l” - i+Cexp(--3ab/2t) 

where C is related to ooll, the initial value of a”. Consequently, 
u l1 - 4 (3a/2b)~~1’ = a*” as t - m. If ool’ > CY*“, then the process of 
stress relaxation takes place; for ooll < o*ll stresses increase for 
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fixed deformation. 

4. The examples considered were of qualitative and illustrative 
character. In a series of cases, however, a quantitative description of 
real materials may be given in the framework of the considered system on 
nonholonomic models. 

Let us present now a simple model which describes with sufficient 
accuracy the results of the experiments by Bergen, Messersmith and Rivlin 
[31 on relaxation of stresses in certain filled high-polymers. 

In these experiments five materials were used: vulcanized, heavily 
filled synthetic rubber and four polyvinyl chloride compositions contain- 
ing various amounts of inorganic fillers (from 0% to 50% by volume). 

The specimens from these materials in the shape of straight tubes of 
constant circular cross-section with internal and external radii a and b 

were subjected simultaneously to simple extension and torsion in the 
course of a small interval of time 0 < t GT with constant temperature. 
The deformations were fixed subsequently and for t >> T the forces were 
measured which were necessary to maintain these deformations. 

The results of experiments were used to construot a mathematical model 
which would permit the description of the materials considered during 
processes of relaxation. The authors show aat ia the experiments one 
may assuee rith sufficient accuracy that the materials are incompressible 
and that in processes of relaxation the following relations are satisfied 

$j = eeii - tiii 

. . 
where piI are the components of the stress tensor, p is the hydrostatic 
pressure, E . . 

‘J 
are the components of the small strain tensor, 8 is the 

scalar function of time t and two strain invarfants (In = 0 by virtue 
of the condition of incompressibility by small deformations). 

The scalar function 8 was found by the authors for all five materials 

considered. It is clear that the kMsations (4.1) in which time t appears 
explicitly, do not serve as a mathematical model of either material. 
These equations do preclude the possibility of not only studying the be- 
havior of materials in processes connected with the change of the strain 
tensor or the temperature, but also regarding the initial stage of the 
process of relaxation by E ij = con&. At the same time a whole class of 
models with relations of the type (1.6) may be suggested which describe 
the behavior of the material in any process and by which the final stage 
of relaxation for fixed small strains obeys the Equations (4.1). Let, for 
instance, 
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Aij = ,ij + d?_ & 
x ’ a>% (4.2) 

where a = a(s. ., TO is a function which must be determined from experi- 
ments. The fuiition K will be determined in such a way, that the kinetic 
equation for x is of the form of 

M and p = p(T) are also determined from experiments. 

Then for an arbitrary selection of coefficients Bij and Aijk’ in re- 

lations (1.6) the isothermal relaxation of stresses for fixed strains 
obeys the following laws: 

or 

d (8 _ ,@*j) = & + $ ($ _ &j) dx I (4.4) 

In these formulas goi’ are the components of C in undeformed space, 
u = oijgijo/3, the strains are small and the material is incompressible: 
II(E) = 0. 

The solution of system (4.3) and (4.4) is given by the equations 

(4.6) 

where 

&= & a~ = d for t = 0 
1 

. . x0 = x c, =- 
XOP--l 

For large times t( t >> T) these formulas become 

(4.7) 

(4.8; 

The quantity T is set equal to the largest of tl and t. ., 
‘J 

whereby 
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CO 

h = M@-1) ’ 
tij = 

co= / a-1 ita _ 1) (,di _ ,0,p)](P-l)/(~--r) co 
M (p _ 1) teij )(P--iha--1) - M (P - 1) 

(i, j = 1, 2, 3) 

Thus the final stage of processes of stressed relaxation in the media 
of the type considered is described by formulas which coincide in the 
construction with those of the authors [31. Indeed: 

1) the stresses do not depend on their initial value; this means, that 
the material “forgets” the history of initial deformations: 

2) the dependence of stresses on time and deformation is given in the 
form 

where q1 does not depend 

3) the function 

is a decreasing function of time t by p > 1. On the basis of experimental 
results given in form of tables in [3], the value of p may be determined 

for a temperature T = 21 f l°C, which corresponds to the conditions of 

the experiments and also the dependence of the function 

on deformation, nor q2 - on time; 

1 

rp1= t p-1 

-- 
(a -.I)-1 [M (p - I)] Ll 

on deformation for the same temperature. Thus, for instance, for speci- 
mens made of polyvinyl chloride composition No. 1 we may assume 

-- 
p-i=7.64, p(a-i)-‘[M(P-i)] L4 

where A is a constant for given temperature and is equal to 1.85 x lo3 
lb/in2; for specimens of polyvinyl chloride composition No. 3 

-- 
8-i =6.36, p(a-I)-‘(M@-i)] all =A-BiogJ, 

where J1 = 2(~. .e.. - E..E. .), A=O.66 x103 lb/in2, B = 0.86 x lo3 lb/in’ 
for the same ti:pi:aturi’of’the experiments. 

However, the tests conducted in [3], are entirely insufficient for a 

complete determination of the model. They do not permit to select x0, 
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because the initial stage of the relaxation was not investigated; a and 
M cannot be determined from them separately, *the dependence of all the 
functions of temperature, the coefficients B’I, A’)“, K, cannot be 
selected in a suitable way, nor can the form of the free energy F. For a 
complete determination of the model tests must be conducted In particular 
on isothermal creep and on deformation under conditions of variable 
temperature. 
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